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ABSTRACT

Various methods useful for deconvolution of physical
data in order to remove systematic distortions are discussed.
Digital, numerical and analog techniques are described along
with experimental results which indicate the merits of
different methods. An analog method is mathematically
analyzed in detail demonstrating that it performs a modified
symmetric Gauss—-Seidel iteration. Convergence criteria and

the effects of noise are also discussed briefly.



CHAPTER 1

INTRODUCTION

1.1 Convolution and Deconvolution

In the process of measuring and recording any physical
observable in experimental physics, the quantity being measured
is filtered by the measuring process. The optimum instrument
is the one which records the quantity being measured with a
" minimum of distortion; i.e., the instrument which has the
highest frequency response or resolving power. However in
many instruments the information being sought is necessarily
obtained in a distorted form. When the quantity being sought
is measured as a function of another parameter, e.g., as in
the case of spectral information or distribution functions,
quite often this filtering process can be expressed as the
convolution of the function being measured with another func-
tion, which represents the characteristic distortion produced
by a certain instrument. The criteria necessary for this
definition to be applicable are discussed in section II1 of
this thesis. The process of convolution for functions of
one variable can be expressed in integral form as is shown
in section III. Emslie and King1 and Frei and Gunthard2 dis-
cuss the representation of instrumental distortions by
convolutions. Roseller3 and Schrack4 are typical of works
which calculate the convolutions of some common spectral
functions.

The more difficult process of '""deconvolution'" is the

one with which the experimenter is often faced when he must
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analyze recorded data. It is not uncommon for the convolution
process of measurement to have completely masked details or
fine structure in the measured function. An example of this
can be found in spectral measurements in which fine struc-
tures were discovered when instruments with greater resolving
power were first used. 1In order to recover these masked
details or fine structure one must reverse the convolution
process or '"'de-smear'" the data. This can be done by solving
the convolution integral equation when the characteristic
distortion function of the measuring apparatus is known.
However, the actual implementation of deconvolution is a
non-trivial operation, and perhaps for this reason it has
not yet been widely applied for the interpretation of

experimental data.

1.2 Numerical Deconvolution

Thefe are many methods for solving the convolution
integral equation, but they are generally numerical techniques,
because rarely is the apparatus function known in closed
form and almost never is the recorded output of an instru-
ment defined analytically. It is shown in section IV that
the problem can be formulated numerically in terms of linear
simultaneous equations, or a matrix equéfiono Direct methods

5,6,7

can be used to 'solve tHe simultaneous equations but

these methods generally are not successful for higher-order

systems. This is due to the fact that the system of equa-~

tions is ill—conditioneds’g’lq resulting from the fact that

. e . . . 11
the coefficients are points on a continuous apparatus function.



Because of this ill-conditioning, iterative techniques have
been widely used to approximate the desired solution.

One of the earliest iterative techniques to be applied
to deconvolution is a method of successive approximations

due to van Cittert,lz discussed by Burger and van Cittert,13’14

and called the simplest method of steepest descent by Tal.,11
Much literature is available on the use of wvan Cittert's

6,15-21 Another iterative

iteration for deconvolution.
technique which can be used for deconvolution is the Jacobi
iteration (see for example Ralstonzz)° The Jacobi iteration
can be 'over-relaxed" resulting in Von Mises’ iteration,z
which can always be made to converge for a positive definite
coefficient matrix. Another iterative technique, which is
generally favored over the Jacobi iteration because of its
more rapid convergence, is called the Gauss~Seidel iteration

and seems to be due to Seidel,24 A symmetric or double

sweep version of this iteration was reported by Aitk@n.25
Both the Gauss-Seidel and its modification by Aitken can be
shown to converge for a positive definite coefficient

26,23

matrix. The Gauss-Seidel method can also be 'over-relaxed’

to hasten convergence. This technique is called successive
over-relaxation or SOR, and is credited to Youngo27

Also there are the ''gradient” iterative techniques
derived from the minimization of the quadratic functional.
The standard method of steepest descent first proposed by

Temple28 and discussed by Stiefel29 and Tal11 can be used

for deconvolution and will always converge for a positive



definite coefficient matrixoll An accelerated steepest

descent method30 was also used by Ta1,11 The method of
conjugate gradients is a special modification of the steepest
descent method, and was first used by Hestenes and Stiefela31
It is actﬁally a direct method since it theoretically converges
in a finite number of steps. However, in practice due to
round-off errors the iteration is continued until the desired
accuracy is obtained. These iterative techniques are

discussed in section VI.

By Fourier transforming the convolution integral
equation a simple algebraic equation can be obtained which is
easily transformed to give the desired solution. In actual
calculations a Fourier series is used and only a finite
number of terms are considered. The Fourier transform
method has become quite popular and much literature is
available relating to the use of the Fourier transform method

6,21,32,41

for deconvolution. Another method for deconvolu-

tion which is easily derived from the Fourier transform
approach is called the ‘derivative me’chod,,Az_4t6 The Fourier
transform and derivative methods are discussed in section V
of this work.

Another deconvolution technique, which should be noted
because of its increasing popularity, is a technique in which
the system of linear equations defining the convolution
process is overspecified and then some method of least
squares fitting is used to solve for the unknowns§9”40’47_51

Both direct and iterative techniques have been used to

calculate the least squares fit.



Deconvolution using the properties of the eigenvalues
and eigenfunctions of the convolution integral operator is
discussed in section VII. This method of deconvolution has

been used by several workers 16792754

to analyze the decon-
volution process. In actual calculations one deals with the
eigenvalues and eigenvectors of the coefficient matrix.

Perhaps at this point some general references on
numerical deconvolution should be noted. An excellent review
of iterative techniques is found in Martin and Te@_gz3 and
many books on the topic of numerical analysis (see for example,
Ralstong22 Hildebrand,55 and John56) discuss them in some
detail. Several more references on numerical techniques
are available;2’ 02 and, Mikusinski®® and Berg®? talk about

convolution transforms in terms of operational calculus.

1.3 Errors in Deconvolution

Since the deconvolution process is prone to noise or
errors due to the ill-conditioning or instability of the
equations, many of the works on numerical deconvolution
draw attention to the effects of errors and/or discuss the
problem theoretically?,16;19932933,,36_950,51953,54,65-—67
Worth particular mention are the works of Rautiansz and
Rushforth and Harris54 on this topic. 1In this vein as well,
several authors discuss convolution and deconvolution in

1,68-70

terms of information theory. The effects of noise

and errors are discussed in section VIII of this work.



1.4 Deconvolution by Analog Methods

Up to this point the methods listed have been of the
numerical type which are usually implemented with the aid
of a high-speed digital computer. There also has’' béen a
fair amount of work using electronic analog devices to
effect deconvolution. The work relating to analog methods
can be broken down into two general areas. Analog devices
which simply convolute comprise the first area, which will
be called indirect methods. In order to deconvolute with an
analog device which is capable only of convolution, the
accepted technique is to have a trained operator who
proposes a solution, convolutes it with the apparatus function,
and then checks to see if it matches the problem to be decon-
voluted. If it doesn't, another solution is proposed and the
process 1is repeated. This continues until the operator is
convinced that the solution fits. This amounts to having
a human in a feed back loop, and, unfortunately there is no
way in which a solution so obtained can be mathematically
demonstrated to be unique. In the area of indirect analog
methods, French, et a171 and Noble, et a172 presented
instruments which essentially sum curves in order to
simulate the convolution process; and Profos73 reported an
electro-mechanical analog device for convolution. Diamantides74
and Kindlemann75 developed high speed electronic correlation
computers which are somewhat digital in nature; Zverev and

76

Orlaf, and Breton and Hirschberg77 used electro-optical

devices for performing convolutions.



The second area is composed of analog devices which
use a direct method for deconvolution; i.e., devices whose
operation can be shown to be mathematically equivalent to
one of the direct or iterative numerical techniques. In
the area of direct methods, the simplest approach is to use
standard analog computer techniques to solve simultaneous

79,80 _

equations (see for example Goldbergg7% Dolby,
Dolby and Cossletts1 used this approach to the problem;
but, for more than a few unknowns (they had only three) the
circuitry becomes formidable and somewhat unstable, agaiP
due to the ill-conditioning of the system of equations. %
Allen, Gladney, and Glarum82 and Glarum83 used analog
methods for resolution enhancement which have for a mathe-
matical basis the derivative method described earlier.
Zgrner46 proposed an instrument using a special magnetic
tape apparatus whose basis was also the derivative method.
Krishnamurty,84 and Korsunskii and Genkin85 reported the use
of analog devices which were based upon iterative numerical
techniques. The most sophisticated direct analog methods
are found in the automatic analog devices proposed and
developed by Kenda11°86_90 In a patent,erndall88 suggested
the modification of many of the indirect analog methods
(e.g. the optical methods of convolution 76’7% in order to
have them deconvolute automatically using a direct method.

A later electrostatic analog computer was proposed by
Kendall, developed by Zabielski,91 and reported by Kendall

and Zabielskiggz Section IX of this work will be devoted



to a description of this instrument, its operation and per-
formance, and various experimental results. It will be

shown that this instrument performs a modified symmetric
Gauss-Seidel iteration, and the effects of various parameters

on convergence will be demonstrated.



CHAPTER II

STATEMENT OF THE PROBLEM

The general problem is that of recovering information
which has been transformed in the process of its measurement
or detection in a characteristic manner which can be described
by a linear convolution operation. For the measuring or
detection process to be shown to be a linear aperation,
the law of superposition must apply (e.g. an input which is a
sum of several distinct signals must result in an output which
is the sum of the outputs which each one of the distinct
inputs would produce separately), and the characteristic
distortion function or apparatus function must remain the
same to within a multiplicative constant over the entire
region of the independent varisbles. over which the problem
is defined.

The specific goal of this work is to review and
evaluate available techniques for performing deconvolution.
Results obtained using the RM-5 analog device which has been
developed in this laboratory will be reported, along with a

mathematical description of its operation.



CHAPTER III

THE CONVOLUTION INTEGRAL

3.1 Some Properties of the Convolution Integral

Assuming that the broadening or distortion of spectral
data can be described as the convolution of the true data
input to an instrument and the characteristic distortion
function of the instrument, the problem becomes one of
solving the integral equation which represents the convolu-
tion process. Equation (1) describes the convolution of two

functions A(x) and T(x).
©
F(x) = S‘A(X—Xv) T(x') dx' @)
~%

F(x) represents the recorded output data from an4instrument;
T(x') describes the true input data to the instrument, and
A(x-x') the characteristic function of the instrument.
Equation (1) can be thought of as representing a transforma-
tion which takes a function T(x') in the x' space and maps
it onto another space spanned by x, resulting in F(x). It
is instructive to examine some special cases of equation (1).

If one lets
A(-x') = 6(x-x") (2)
where 6 is the Dirac delta function; then one finds

F(x) = T(x) (3)
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This means that equation (2) describes the "ideal'" instrument;
i.e., one which simply reproduces the input data exactly.

Further if one lets

T(x') = 6(x") (4)
the result is:

F(x) = A(x) (5)

and in this case the output of the instrument, F(x), is just
the characteristic function of the instrument, A(x), or its
response to a delta function input. Another interesting

property of the convolution integral can be found by inte-~

grating equation (1) with respect to x

0 ©
u/\F(X)dx =C/1k/\A(x—xV) T(x')dx'dx (6)
) —0 =00

and rewriting equation (6) as:

[s¢] o0 o0
k/‘F(x)dx =&/1A(z)dzk/\T(x’)dx’ .(7)

—00 -0 ~00

Now if one requires A(x-x') to be normalized; i.e.,

(e 0]
fA(x)dx = 1 (8)

=0

then equation(7) reduces to
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) »

JFF%x)dX =L£\T(x°)dx' (9)

00
what this implies is that if A(x-x') is normalized, then
area is preserved by the transformation of equation 1. All

of the above properties are well known63

3.2 Real Convolution Problems with Finite Limits

In all of the practical cases with which this
report will deal, F(x) will be defined over some finite
interval (¢,B), and be positive definite and continuous
over that interval; which implies that F(x) goes to zero
at x=00 and x=B, and is identically zero for Xéa and xZB°
This,along with the fact that A and T will be assumed to be
functions defined in the same manner as F, further implies

that equation 1 becomes:
b
F(x)=k/"A(x—X°) T(x') dx°’ (10)
a
which is immediately recognized as a special case of the

Fredholm Equation of the First Kind, which is usually

written:
b
F(x)=a/\A(x,X“) T(x') dx' (1)

Figure 1 illustrates, schematically, a typical convolution

as described by equation Q0.
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T(X")

e ——— - —)) = -

Figure 1

A schematic example of the convolution process.



CHAPTER 1V

NUMERICAL FORMULATION OF THE PROBLEM

In all but very special practical cases, the appar-
atus function A(x-x') is not known in closed form, but
rather is obtained by recording the response of the instru-
ment to a 6 function input (i.e., an input which is as
nearly like a 6 function as is practical). Then the prob-
lem becomes one of solving equation (10) numerically when
F(x) and A (x-x') are known. To solve the problem
numerically, one must take a finite number of points to
describe F(x) and A{(x-x') and also solve for a finite
number of points which will describe T(x'). If one takes
N equally spaced pointsvin the interval (a,b) over which
F(x) is defined, then letting

x =a + [ b-a)A(N-1)] (n-1) n=1.... N (12)

one can define a set{En} of N points which represent F(x),

where

F_o= F(x) (13)

Then if one similarly defines

x”n=a + [(b—a?%N—l)](n—l); n=1,"""'",N [1] (14)

and

(] Tn=T(Xvn) y (15)
1

If A(x) is symmetric about x=0 and F(X)E(a,b), then

T(x) ¢ ‘(E‘usb)
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one can also define

Anm=A(xn—xm) (16)

Substituting the results of equations (13), 15, and (16) into
equation (10) and replacing the integral by a sum, one

obtains:

N
F=Kz A T [ 2] (17)

But equation(17) simply defines the matrix equation which
is commonly used to describe a system of N linear simul-
taneous equations in N unknowns. The Tm are the N unknown
elements of a N x 1 matrix (vector), the Anm are the
elements of the N x N coefficient matrix, and the Fn are
the elements of a N x 1 matrix (vector) which is known.
Equation (17) can be written in standard matrix form:

Ax=Db (18)
where the elements of A are Anm’those of x are Tm9 and
those of b are Fn° Figure 2 illustrates this procedure
for a typical problen. (Note that x in equation (18 now
represents an unknown vector, not an independent variable
as it did previously.)

[2] K is a scale factor equal to the increment between

points of T(x). For simplicity it will be assumed equal

to one.
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FIGURE 2

An example of convolution done numerically using discrete points.
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Theoretically now the problem is just that of

inverting an N x N matrix, for as one multiplies equation

@18) by the inverse of A,A—1 the result is:

x = A 1p (19)

However, as soon as the order of A gets moderately large
(N=30 to 40), A becomes more nearly singular; i.e.,

limit (det A) = 0 (20)
N —w

11,53,65,66 -

b

due to the continuous nature of A(x-x') and
direct methods treaki down due to finite round-off error in
any numerical calculation. This problem will be discussed
in detail in a later section. The fact that det A is
small means that the system of equations is "ill-condi-

8-10"

tioned" For solving ill-conditioned systems,

iterative techniques are generally the most successful.



CHAPTER V

DECONVOLUTION BASED ON FOURIER TECHNIQUES

5.1 The Fourier Tranéform or Series Approach
6,21,32,41

Many workers have reported on the application
of the Fourier transform to solve the convolution integral.
Using an approach similar to that of Rautiansz, if one

Fourier-transforms equation (1),

[+0] [v o] g?
L[ pxyelvFax = Lo ] A (x-x")T(x")dx* | el%gx

Upon manipulation this becomes:

[¢0] o0 o]
ﬁ%:k/\F(x)el”de = —l-l/‘ A(x x')el‘”(X x"Jq

I\lZ‘]T =0 "'00/\ 27 Lo
T(x')elwX dx'

which can be further reduced to

(o 9]

£ (w) =fa(w) T(x')eleox gy

-0

and finally

f(w) =,v2ﬁ a(w) t(w) (21)
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where f(w), a(w), and t(w) represent, respectively, the
Fourier transforms of F(x), A(x), and T(x). Solving

equation (21) for t(w) and doing an inverse Fourier transform,

the result is

T(x) = 1 k/\ f(w) e*iwxdw (22)
27 a(w)

Hence, in theory, one needs only to Fourier transform F(x)
and A(x), and then use‘equation622)toobtain T(x). However,
in practice, this technique is found to be highly susceptible
32,36

to noise and only moderate resolution enhancement

(factors of 2 to 4) is usually obtained by this method.
A similar treatment can be used for analyzing
equation (1) 'in terms of a discrete Fourier expansion, If

ohe starts with

o0
F(x) =Z fnelnx,
n=-c0
o

A(X-X') — Z aﬁein(X—X')

== =00
0

T(x') =Z tneirfx' (23)

n==00

where F(x), A(x), and T(x) are defined only on the interval

(=m,m) on x, then one can find the relation:

= — (24)
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in analogy with equation (21). This general technique can be
used to analyze equation (1)in terms of any linear integral
transform or expand the functions in terms of any complete

orthonormal set of functions,

5.2 The Derivative Method

Another method for deconvolution which is frequently
reported in the literature, the 'Derivative Me1:hod'42’46 is
derived from the Fourier transform method. First one

expands the reciprocal of the Fourier transform of A(x) in

a Taylor series of the form

(o0}

R S }: Cn(iw)n (25)

a(w) n=0

and then this result is substituted into equation 22:

w w o .
1 = [ ) el 1w e Ra (26)
2W

~c0 ‘=0

Next, using the definition of f(w), equation (26) can be

rewritten

o0
T(x) = f Z c (i) fF(X')ein'dx' e 1% g
(Zw)

-0 n=0
or rearranging
Q0 [o/¢] Q
3 ?
T(x) = —l;- }: cy Jp 1 Jf (iw)nelw(X X)dw F(x')dx'
J n=0 oo,Tr-oo

(27)
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But the term in brackets in equation (27)can be expressed as

the n'th derivative of the Dirac delta function46:

[s 0]
6™y gy = _Lf (iw)Relw(x-x") 4, (28)
2

-0

With this information, equation (27) becomes

0
T(x) = —1—- Z an(n)(x) (29)

which expresses T(x) in terms of the derivatives of F(x),
hence the name 'Derivative Method!. The constants {cn} can
be expressed in terms of the moments of the apparatus

function. ZEquation (25)can be written:

(o]

Z e (i)™ = — - 1 (30)

n=0 S fA(x)ei“’xdx
ﬂzw
=00

Then using the power series expansion for an exponential,

equation (31) is obtained

o0

§ eniorn « B @
n=0 Ej'—l_-df‘ xMA(x)dx| (iw)®
n=o | B¢ 2, '

from which the Cn can be evaluated in terms of the moments

A e
of A(x) (see, for example, Zorner46)° It can be easily

seen that this method also is prone to noise, as the



- 29 -

process of differentiation enhances noise; and hence in
practice the series for T(x) in equation (29) must be

truncated before the noise level becomes intolerable,



CHAPTER VI

NUMERICAL ITERATIVE TECHNIQUES

6.1 The Jacobi and Gauss—-Seidel Iterations

A numerical iterative method which is commonly used to
solve ill-conditioned equations of the form shown in

equation (18) uses the following formulae:

(i+1) _ 1 S (1) _ (1) _ _ (1)
X7 = o (b - A%y 213%3 T Tee T 21 N*N
11
(i+1) _ 1 )W (1)
Xg - - (bgy - ag1%y Ag3%3 To.-7 Bgnfy
29
(i+1) _ 1 _ (1) _ (i) (i)
Xy - (by = 2% Ang¥g Te e TANN_1%N-1
NN
(32)

In equations (32), the superscript denotes the iteration
number and the subscript denotes the component of the
vector x. The iterative method defined by equations (32) is
sometimes called the Jacobi iterationZzo

Another iterative technique which is commonly called
the Gauss~-Seidel techniquez4 uses formulae similar to
equations (32) with the modification that the most recently
calculated value of each xi is used when calculating the

new value of any component, xj°
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(i) _ 1 S N N ¢ 5
X7 = (b - 2a55%, 1g%g"  mee o= AELTT)
a
11
(1+41) 1 ) (1+1) _ 1) @)
Xq = — (b2 a21xl agaXg e oo~ BgyXy )
a .
92
(i+1)_ 1 _ (i+1) _ (i+1) . _ (i+1)
N T (by = ay¥y Ano¥o s oAy NeENAL )
a
NN
(33)

Equations (33) define the Gauss-Seidel technique. These
iterative methods, which will be referred to as the Jacobi
iteration for equations (32) and the Gauss-Seidel iteration
for equations (33), may or may not converge depending upon
the form of the coefficient matrix A in equation (18). A
general criterion for convergence is that a matrix in which
the main. diagonal dominates; i.e., one in which the largest
term in any row is the term on the‘main diagonal, has a
better probability for convergence. However, a more
explicit definition of the convergence criteria is desirable.

If one rewrites equations (32) as shown in equation (34)

3=1 N
(1+1) _ 1 ) ‘Ez (1) _ E: (1)
xj ;—_g(bj . ajkxk ajkxk ) (34)
i3 k=1 k=j+1

and equation (33) as shown in equation (35)
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-1 N
(i+1) 1 _ E (i+1) _Z (i)
xj = ;—— (bj ajkxk ajkxk )
33 k=1 k=j+1

(35)
it becomes immediately obvious that equations (34) and (35)
can be rewritten in matrix form as shown in equations (36)

and (37) respective1y22°

X(i+1) _ Dﬁl(b—LX(i) _ UX(i)) (36)
Jacobi
X(i+1) - Dnl(b—LX(i+1) - Ux(i>) (37)

Gauss~Seidel

The elements of the matrices D,L, and U are defined in
equations (38); and this decomposition of the matrix A is

shown schematically in Figure 3.

ij T
835, t 7 J
_ ; 12>
A~ .,
a,.; i<
ij
u — s 1 _<__
1J s i > (38)

a, .
1]



Figure 3

Graphic répresentation 6f the decomposition
' of the coefficiént matrix A
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Solving equations (36) and (37) for x(1+1), one obtains
equations (39) and (40)22
x*D _ plep oY) L opx() (39)
Jacobi
<D o2l o - wD) (40)
Gauss-Seidel
Now as one further lets x(o) = 0 as is the general practice

with these iterative techniques, unless one has a good

approximate solution with which to begin, equations (39)

(i+1)

and (40) can be used to express X in terms of a power

series for the Jacobi and Gauss~Seidel iterations

respectively.
L) _ Z (D" [L +-€] (41)
n=0
i Jacobi
(D) ‘f§: (-[ﬁ +-Q_1U)n (D +1)"'p (42)
n=0 a

Gauss-Seidel

Both of these series will converge if and only if the true

norm, as defined in appendix I, of the matrix term which is
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raised to the power, in each of them, is < 1 in analogy to
an algebraic power series. A sufficient but not necessary
criterion for convergence is that the Euclidian norm, as

defined by equation (43), for any matrix E

NE(E) = ii §E %5 (43)
i=1  j=1

be < 156° One can also use the Euclidian norm of a matrix

to put bounds on the true norm°° as shown in expression (44).

NG (B) > N (E) > N, (E) (44)

1
G
where M is the order of the matrix. However, it can be
shown that the true norm of a matrix is equal to the
magnitude of its largest eigenvalue (see Appendix I).
Further if the Jacobi-iteration converges for a system of
equations, then the Gauss-Seidel iteration usually will also
converge and will do so more rapidlygz, Hence the Jacobi
iteration is rarely used in favor of the Gauss-Seidel
iteration,

The Gauss-Seidél iteration will:-always converge for a
system of equations if the coefficient matrix A is positive

definite26o A matrix A, is said to be positive definite if

it satisfies the condition expressed by equations (45)26:
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A =38TB
orY
a N
411 212 . 1
_|a11|, . e . . all > 0
391 %22 |, . ) a
Nl o -3 [-] ® . NN

(45)

If dne is working with a system of equations as defined by
equation (18) in which the coefficient matrix is not
positive definite, the system can be transformed by
multiplying equation (18) by AT from the left, as shown in

equation (46):
A"Ax = A (46)
Equation (46) can be written as

A'x = Db’ (47)

.3

where A' = ATA, and is positive definite by definition,

and b'?=ATba Then one can proceed to use the Gauss-Seidel
iteration to solve equation (47) for x., It is interesting
tb note that a coefficient matrix A which satisfies
equation (45) corresponds to an apparatus function which
can be expressed as the convolution of some function B(x)

with itself; i.e.,
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o0

JP B(x-x') B(x') dx° (48)

—00

A(x)

Another way of stating this is that A(x) is the auto-
correlation function of some other function. Some of the
common apparatus functions which fall into this category

are the Gaussian, Lorentzian, and triangular functions.

6.2 Relaxed Versions of the Jacobi and the Gauss-Seidel

Methods

The Jacobi iteration can be over-relaxed to hasten
convergence. The new iteration is called the von Mises'
iterationzs, If one rewrites equation (36) in the following

form
(D _ () [D'lmo - o) —‘x(iﬂ (49)

von Mises' iteration is a simple modification as shown in

equation (50):

X(i+1) - x1) B [é_l(b - Lx(i) - Ux(i)) - x(iﬂ

(50)

where B can be adjusted to guarantee convergence for a
positive definite matrixzs, The SOR method27 is an over
relaxed version of the Gauss-Seidel technique and is derived
from the Gauss-Seidel formula in the same manner as above,

resulting in equation (51)
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L3+ X(i) +p D-l(b _ LX(i+1) _ UX(i)) ENEY

(51)

The SOR method will converge for a certain range of values
of B when A is a positive definite matrix, and the rate of

. . 23
convergence will be a maximum for some value of B .

6.3 Steepest Descent Methods

The simplest method of steepest descentll—14 or method

of successive approximations for solving equation (18) where

A is a positive definite coefficient matrix, uses the

formula

X 1= % + arn (52)
where

r, = b - Axn (53)

and @ is a constant which must satisfy the inequality

2

A
max

0 < aX<

(54)

where kmax is the largest eigenvalue of the matrix A, in

11
order to guarantee convergence .
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The standard steepest descent me’chod28’29 uses the
formula
Xn+1 = xn + anrn (55)
where
r, =b - Ax (56)
and
T
a Tn
Q@ = (57)
n r TAr
n

For both of the above methods it can be shown that the
convergence is fastest in the directions of the eigenvectors
corresponding to the largest eigenvalues of the matrix A,
which has the effect of damping out the oscillatory parts of
a solutionll, In general the methods of steepest descent
converge very slowly.

It should be noted that the standard steepest descent
method is derived from the minimization of the quadratic

functional szz

Q(x) = % xTAx - xTp (58)
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when A is positive definite. This form has a unique minimum
when X is the solution of equation (18)?2 To derive the
standard steepest descent method, consider the gradient of
the functional Q evaluated at x = X, :

1

-1, (59)

]
>
e

[ d

|
g

i

Next an ai is calculated such that Q(ximwiri) is a minimum:

1T T 1 2. T 1T
- = e = o s -
Qxy-0yr;) 5 Xy Ty toeryry Fg ey Ar -5 Xy
(60)
Q r,Tr + a,r,TAr = 0 (61)
aa 1 i 1 1 i
i
T
—I"iri
0, = —x i (62)
1 roTAr
i 1

which yields the formulae for the standard steepest descent
method.
An accelerated version of the steepest descentgo method

uses the following formulae

+ Q_Ar +

X = X -+ 0.7 oo
n 1n 2 n

n+l

+ O Apmlr (63)
P n

where

}1
il

b - Axn (64)
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and the {ai} are determined by requiring that the functional
(irAx—xTx) is a minimum; i.e., by solving the following p
1

equations for the ai S

T, j-1 T,j+k-1_ _
r AT vy iﬁ.ii . Tn A r =0 (65)
k=1

for j=1,2,...,p

Tal11 found that large values of p speeded up convergence

so much that no smooth approximate solution could be
obtained, but that an optimum value of p could be determined

experimentally for a particular type of problem.

6.4 Conjugate Gradients Method

The method of conjugate gradients31 is similar to the
method of steepest descent with the exception that each
successive correction vector is calculated with the
additional requirement that the residuals {ri} will form
an orthogonal set of N vectors, or some ri=0 for i< N, in

which case the solution has been obtained. The formulae

are:
el =~ %3 T %Y (66)
’ o, - viTri///§iTAvi (67)
i+1 = Ti+1 TPV (68)



In practice,

one generally

The sequence then becomes:

Since the ri?s form an orthogonal set, N of them will
completely span the N-dimensional space in which x is

represented;

Calculate
Calculate
Calculate

Calculate

Calculate V

Calculate

Calculate

Qo

X

r

P

o

X

1

1

1

1

1

1

2

Repeat steps

by one.

from

from

from

from

from

from

from
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(69)

(70)

lets x =0 and then v =r =b-~x =b.
o} o o o

equation
equation
equation
equation
equation
equation

equation

(67)
(66)
(70?
(69)
(68)
(67)

(66)

c. thru g. increasing all subscripts

and, hence this technique in theory will

converge to the proper solution in a finite number (N) of

iterations,

In practice,

due to round-off error, more than

N iterations are usually needed to obtain a sufficiently

converged soiution11

®
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CHAPTER VII

THE EIGENVALUE APPROACH

Another method which can be used to solve equation (10)
for T(x') utilizes the properties of eigenvalues and

eigenfunctions. If one solves the characteristic equation

b
9, (x) = —%—f ACx-x") @, (x")dx’ (71)
i a
for the eigenvalues {ki} and the corresponding completé
orthonormal set of eigenfunctions {¢i(x)} on the interval
(a,b), which will result for a positive definite A(x-x'")
which is symmetric about x = x', then one can éxpand
functions on that interval in terms of the set.{¢i(x)}, If
one assumes that both T(x) and F(x) of equation (10) can be

represented by:

T™(x') = }: ti¢i(x') (72)
i

CF(x) = Z fiqoi(X) (73)
i

then the problem is one of solving for the relatiounships
between the ti's and fi's, Firstly, the values of fi can be
found by multiplying equation (73) by ¢j(x) and integrating
with respect to x over the interval (a,b). By using the
properties of orthonormal functions it can be shown that

fi is given by equation (74).
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b
f, = L/\ F(x)¢i(x)dx (74)

1
a

Then by substituting from equations (72) and (73) into

equation (10) and using equation (71),

A b ‘
}Z fi¢i(x) d/‘ A(x-x") ;S tj¢j(x’) dx'

i a J

b
1
) fLo, = }: t. A, —_ Jf A(x=x")e. (x")dx"
zz 194 (%) - 3%y N ( )¢J( )
i J j a
the result is equation (75),
zz fi¢i(x) ==z: tjlj¢j(x) (75)

i J

from which one deduces that for all values of i,

L)

°

1
t, = — (76)
1.

1

After finding the values of ti, T(x') is constructed using
equation (72).

To actually implement this technique numerically, one
must first formulate the matriﬁ equation, of the form

shown in equation (18), and then solve equation (77)

Ay. = A,y. (77)
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for N eigenvalues, {li}, and their corresponding eigen- -
vectors, {yil Since A will always be assumed to be a
positive definitevN X N matrix, the eigenvalues will all
be real, distiﬁct, and positive. However, due to the
ill-condition of A, there will be many eigenvalues near
zero. = Further, the eigenvectors corresponding to these
small eigenvalues * will be highly oscillatory in naturell,

Using a completely analogous development, one can finally

‘'show that x in equation (18) is given by equation (78).

T

N oy,
X = E: V. (78)
i=1

A i
i

Further, if one indexes the eigenvalues in descending order

(ll > A, > . . ,>>ln), then by truncating the series of

2
equation (78), an approximate solution of equation (18) can
be obtained. This truncation effectively filters x or. cuts

out the higher spatial frequency components.



CHAPTER VIII
THEQORETICAL ANALYSIS OF ERRORS IN THE
DECONVOLUTION PROCESS

In most practical deconvolution problems, the function
F(x) in equation (10) is known only within experimental errors
and may also contain noise due to any number of sources. If
one assumes for the moment that the apparatus function
A(x-x"') is known exactly, equation (10) can be modified to

include these effects as shown in equation (79)54°

b
F(x) + N(x) =\/1 A(x-x")T"(x")dx"’ (79)
a
N(x) is the function which accounts for all of the errors in

the observed output of the instrument; i.e.,
Fopg(X) = F(x) + N(x) (80)

and T'(x) is the solution one will obtain when the observed
instrument output Fobs(x) is deconvoluted. The difference
between T'(x) and T(x) then will be the error in the
obtained solution due to the error term N(x) in the observed
output of the instrument F(x). By using the techniques of
section VII these errors can be analyzedfM°

If one lets F(x) be represented by the expansion in
equation (73), and T'(x"') and N(x) be represented by the

expansions as defined by equations (81) and (82);
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T'(x') = z ti o (x") (81)

i

N(x) = }: n, ¢i(;)_ (82)

i
then, by substituting these expansions into equation (79) ahd

using the properties of eigenfunctions, the following result

is obtained54:

f. .
1 A
i i

=)

Using equation (76), equation (83) can be rewritten

=}

t] o=t + -i-l— (84)

1

where ti is defined by equation (72). This result can be

stated in another way:
T'(x) = T(x) + y(x) (85)

where 7(x) is defined in equation (86),

_ n,
n(x) = z — ¢, (%) (86)

i i

and represents the resulting error in the solution.
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The same problem can also be analyzed in terms of the
Fourier transform method‘as described by“Rautian32, I
equation (79) is Fourier transformed, the resulting equation

is:
f(w) + n(w) =~27' a(w)t'(w) (87)

where f(w), n(w), a(w), and t'(w) represent the Fourier
transforms of the functions F(x), N(x), A(x), and T'(x)
respectively. Using equation (21) to substitute for f(w) in

equation (87), one obtains:

t'(w) = t(w) + n(w)

-JZﬂ a(w)

(88)

By performing an inverse Fourier transform on equation (88)

the result is

T'(x) = T(x) + L n(w) ~iwx

27 S a(w)

dw (89)

in analogy to equation (85). This provides an equivalent

definition of 7(x) as shown in equation (90).

(e 0]
n(x) = 1 L/‘ n(w) -iex g (90)
2r ~, alw)

When dealing with errors of a random nature whose mean

is zero, one characterizes the errors by their mean squared
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vaiues° "Rushforth and Harris54 demonstrated that the
total mean square error in the solution, which is obtained
by deconvoluting a noisy problem, is given in the eigenvalue-

eigenfunction representation as

= nf
e = Z -—2—— (91)
- AL
i i
where
[+.0] [+0]
ninj = \/“\/1 @i(x) ¢h(u) RN(xyu)dudx (92)
-0 =0

and RN(x,u) is the autocorrelation of N(x). Rautian32

analyzed the total mean squared error in an approximate
solution obtained by putting finite limits on the integral
when performing the inverse Fourier transform on equation (88),
This amounts to frequency limiting or band pass filtering

the restored solution. The reason for this approximate
approach is found in the fact that it can be shown that

32,54 unless one truncates the series in

N(x) is unbounded
equation (86) or, equivalently, one limits the range of w for
the integration in equation (90). However, limiting the
range of w in order to bound the noise introduces another
error, since this prevents exact reconstruction of the true
solution; or, in &ffect, this limits the amount of

resolution enhancement which is possible. The following

expression describes the total mean squared error32
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— 9 . o . 12
e2 21 L/‘f(w) Pt 1 S e;_\/ﬁ f(w) P L S
Zﬂwb a(w) oy a(w)
w
o S _(w)
L1 f B de (93)
27 - la(w)|
o

The first term on the right hand side of equation (93)
represents the error due to filtering the true solution and
the second term represents the error due to noise., SN(w)
is the noiSe power spectrum and is defined as the Fourier
transform of RN(X,X)D Further, in general, the first term
is a monotonically decreasing function of w, and the second
is a monotonically increasing function of & so that the

effects are competing and a minimum value of e2 can be

found,; for some value of W, .



CHAPTER 1IX

The RM~5 Analog Device

9.1 Description of Device and its Operation

The RM~5 analog device is basically the same instrument
as that reported previously by Zabielskigl° It is an
iterative analog device. A block diagram of the instrument
is shown in Figure 4. The instrument is automatically self-
correcting through the use of a feedback loop. During the
deconvolution process, each time the wiper at point D in
Figure 4 moves to the next memory channel, the error signal
at point A - which is the difference between the convoluted
trial solution on the capacitive memory and the problem to
be deconvoluted ~ is amplified, inverted, and fed back to
that memory channel until the error signal at point A is
reduced to zero (for infinite amplifier gain); i.e., it is
essentially a system with 100% negative feedback. This is
the basic operating principle. One iteration consists of
sweeping thrbuéh the entire memory adjusting each channel
in turﬁo The iterative procedure is continued until the
potential distribution on the memory no longer changes from
one iteration to the next, at which time a stable solution
has been reached.

While the above discussion gives a general déscription
of operation of the_ RM~5 , a more detailed mathematical

description is desirable. Assume for the moment that
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the wiper is contacting the jth memory channel (indexing
from left to right). Then the charge induced on the shaped
electrode which represents the apparatus function A(Xx) can

be represented by91

N
charge induced _ E:
on electrode K ajixi (94)
i=1
where
aj; = ac3-1] a0, (95)

Aﬁ is the spacing between the centers of any two adjacent
memofy channels and is a constant, X, is the voltage on the
i th memory channel, and N is the number of channels. The
constant K in equation (94) is a scale factor which is
determined by the capacitance between the shaped electrode
and the capacitive memory, and the spacing between memory
channels, A¢; both of which are constants. Hence K will be
assumed equal to one as was done previously,’

This will not affect the validity of the following
derivation, Now if one further assumes that this is the
(n+1)th time the potential distribution on the memory is
being adjusted and that the memory is being cycled from left
to right (i.e., the memory is moving from right to left); then
using sﬁperscripts to denote iteration number, equation (94)

can be rewritten (letting K=1).
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. N

charge induced _ j: {(n+1) zz - L(n)

on electrode B4i%5 + asi% (96)
i=1

A=j+1
Now similarly the charge induced at point A in Figure 4 due
to the line follower function generator, feeding through Cqys
can be written

charge induced - .
from line follower ~ ~& bj o7)

where

bj = F(j. &) (98)
and F(x) represents the problem to be deconvoluted. Again
the factor k in equation (97) is simply a scale factor and
will be assumed equal to one to simplify the mathematics.

The total charge induced at point A is then:

total charge charge induced on + charge induced from
electrode line follower

(99)

or

N
total charge = }: a x(n+1 + E: a, Xgn) - b. .
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At point C in Figure 4, the voltage can be given by

; | .
V =6 (b, - E: a. . x(+l) _ E: a. . xM)y (101)
c J - jiti : jiTi
i=1 i=j+1

since all of the amplifiers are inverting. G is the total
loop gain of the system. Now if one assumes that the filter
and logic do nothing in the simplest case, then one can say

(c.f. Figure 4)

vV, =V (102)

But V is just x§n+1), so that the loop equation for this

simple system becomes

' N
x (ML) _ g, f'ji a, x{0F1) _ }: a, . x(™) (103)
J | Ji ~ :
i=

J i jiti
i=j+1
Equation (103) can be solved for x§n+1) resulting in
equation (104).
' Jj-1 N
X(n+l) _ G (b. - }5 a X(n+1) _ E: a X(n))
j 5T L Tiid A E R
1tay4G i=1 i=j+l
(104)

It can immediately be seen that the limit of equation (104)

as G goes to infinity is simply equation (35)



j=1 N
D L@ ) kD L) )
J a 3 jivi ; ji’i
JJj i=1 i=j+1
(35)
which describes the Gauss-Seidel iteration (c.f. section

6.1),
the basis for the operation of the RM-5.
can be further modified to more accurately describe the
actual operation of the RM-5.

First, since the capacitive memory moves in different
the iteration |

directions during alternate iterations,

becomes a symmetric iteration which can be represented by

i~1
G | (n+1) _i (n)
1+a (b,j E aj ixi 3 aj ixi ); nOdd
Jj i=1 i=j+1
(n+1)
XJ i=1 N ,
— &, - fg: a. . x(™ E: a..x B*1; n even
l+a..G I gt Jid
Ji i=1 i=j+1
(105)
For G going to infinity, this iteration reduces to the
symmetric form of the Gauss-Seidel iteration259 which
23,25

converges for a positive definite coefficient matrix
The next necessary modification is one which will
describe the action of a low pass filter in the feedback
loop (between points C and D in Figure 4). Since the
filters in the RM=-5 circuit are actually several low pass

R-C sections, a very simple mathematical model can be used

This demonstrates that the Gauss-Seidel iteration is

Now equation (104)
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as a first approximation. This simple model is based upon
the following argument. Assume that the wiper at point D
in Figure 4 is contacting the (j-1)th channel and is at a
voltage xj_lo Now assume that the memory is moved so that
the wiper is contacting the jth channel. The amplifiers
now see a different error signal and begin to adjust the
voltage xj-to its equilibrium value. However due to the
R-C filtering action in the feedback loop, this adjustment
of the voltage Xj will take a certain amount of time,
determined by the R-C time constant of the filter. But at
the same time, the memory is moving at atsteady speed and
the wiper will only contact the jth channel for a fixed
time period before it moves to the ti+1)th position, Hence,
during that time, the voltage xj will not quite reach its
equilibrium value; but will reach some fraction (less than 1)
of it, which will be determined by the time constant of the

R-C filter. This model can be represented very simply in

mathematical form by

(o (NFL) (n+1) |

a(y X1 ) + Xy 5 0 odd
X§n+1) -
_ v _ L(n+l) (n+1) .

a(y x:j+1 ) + xj+1 ; n even (106)

where
J-1 N
G (n+1) Z (n)
= —a— (b, =- }: a..x. - a,.x, 107

y T o ( 37 L ji%¥1 5i%4 ) ( )
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and
j-1 N
g = -G (b - }: a.,xgn) —-}: a,.xgn+1)) (108)
1+a..G . Ji 1 . Ji i
,j.] i=1 1=j+1
(n+1)

which are the equilibrium values of xj , as would be
calculated from equation (105) in the absence of filtering.
The parameter ¢ in equation (106) determines the amount of
filtering, and is related to the R-C time constant in the
following way:

o = efT/Aet (109)
where At is the time which the wiper at point D in Figure 4
spends contacting each channel in the memory. For T=0,
which is equivalent to no filtering, ¢=1; and equation (106)
reduces to equation (105). For 7>0, oK1 aﬁd hence the
smaller is @, the larger is the filtering action.

The final modification which is required to complete
the mathematical description is one which will describe
the action of the logic between points C and D in Figure 4.
This logic is simply a diode clipping circuit which passes
voltages of only one polarity. The reason for the inclusion
of this circuit in the feedback loop is related to the type
of problem which is to be deconvoluted. In most types of
spectral measurements, the quantity being measured (light
intensity, rf absorption, mass abundance, etc.,) is positive

by definition (i.e. > 0); and a solution which has
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negative values is physically unreal. For this reason
the logic was included. This '"negative rejection'" principle
can be added to the mathematical description in a simple
manner as shown in equation (110).

Z H(Z) ; n odd

%o+l _ (110)
J 7Z'H(Z'); n even

where

(n+1)

_ _ o (n+l)
Z = a(y X501 ) + X1 (111)
v ' (n+1) (n+1)
7' = a(y Xj+1 ) + xj+1 (112)
and H(Z) is the Heaviside step function defined by
0; z2< O
H(Z) = (113)
1, 2> 0

Equation (110) represents the mathematical description of

the operation of the RM-5 analog device.

9.2 Digital Simulation of the RM-5

Using equation (110), the RM-5 was digitally simulated
by the use of a Fortran IV program, which was run on an
IBM 360 computer, model 67. The basic program accepted
as input data the following: ‘

1. The problem to be deconvoluted, F(x), in a one

dimensional array.
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2. The apparatus function, A(x), in a one dimensional
array.
3. The gain, G.
4, The parameter ¢, which determines the amount of
filtering.
5, The number of iterations’%b be performed.
The output of the basic program consists of the following
items:
1. The input data
2. The solution after the required number of

iterations have been performed.

9.3 Experimental Results from the RM=5

Figure 5 shows a Gaussian curve which &as used as the
-apparatus function, A(x), and the problem F(x), for a series
of experiments with the RM-5. The true solution for this
deconvolution problem, is a 6 function singlet. Figure 6
shows the solution which was obtained from the RM-5 for
varying amounts of filtering in the feedback loop. Curve
a in Figure 6 was the solution obtained with the least
amount of filtering, and curves b, ¢, and d, each, were
obtained with more filtering than the previous curve.
Examination of Figure 6 shows that there exists an optimum
value of filtering corresponding to curve b, which gives
the best approximation to a 6 function singlet. The
resolution enhancement obtained in curve b is ~ 8, using

the ratio of the width at half height of Figure 5 to the
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A(X) AND F(X) FOR
FIGURES 6 AND 7

Figure 5
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Figure 6

Approximate solutions KT approx (x)] obtained from
the RM-5 with varying amounts of
filtering for problem shown in Figure 5
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width at half height of Figure 6b. The gain, G, as defined
in section 9.1 was 4.2 for all of the curves in Figure 6.
Figure 7 shows the results obtained from the RM-5 for
various values of gain, G, when deconvoluting the problem

in Figure 5. The amount of filtering is the same as that
corresponding to Figure 6b for all of the curves in Figure 7.
Fiéure 7 clearly demonstrates that it is desirable to have
the gain as large as possible, as is generally true of any
null seeking analog device. Although G=4.2 is not a large
value of gain, it is limited in the RM-5 device by the gain
of the first amplifier in Figure.4. This amplifier can be
considered a charge amplifier if one assumes that the input
is the shaped electrode; but, if one considers the input to
be the voltage on the memory channel which the wiper is
contacting, then this amplifier can be considered to be a
voltage amplifier, and the voltage gain which is calculated
in this manner is the number which is needed (along with the
voltage gain of the second and third amplifiers in Figure 4)
in order to calculate the total loop gain G as discussed in
section 9.1, When the voltage gain of the first amplifier
is calculated in this manner, it is found to be ~ 1/50,
depending upon the air gap between the shaped electrode and
the capacitive memory, as shown in Figure 4. Hence, even
though large voltage gains can be obfained with amplifiers 2
and 3 in Figure 4, the total loop gain is somewhat limited,
since any noise which appears on the output of amplifier 1,

is amplified by amplifiers 2 and 3.
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G=1.05

|
A

G =0.21

G =0.10

Figure 7

Approximate solutions [T approx (x)] obtained from
the RM-5 with varying values of gain
for the problem shown in Figure 5
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Figures 8 through 12 show some typical results from the
RM~5 for various types of problems., Figure 8 shows the
apparatus function A(X) and its deconvolution to a o

function singlet. This apparatus function is not defined in

closed form, but rather was drawn by hand in an attempt to

construct an arbitrary apparatus function. Figure 9 shows
the deconvolution of a problem whose true sélution, T(x), is
a 6 function doublet with equal amplitudes and a spacing

of 1.86 inches. Figure 10 shows the deconvolution of a
problem whose true solution is a 6 function doublet with
equal amplitudes and a spacing.of 1.57 inches. Figure 11
shows the result of deconvoluting a problem whose true
solution is a 6 function doublet with amplitudes having a
ratio 1:2 and a spacing of 1.57 inches; and, Figure 12 is
the result of deconvoluting a problem whose true solution
is a 6 function triplet with all amplitudes equal and equal

spacings of 1.30 inchés°

9.4 Results from the Digital Simulation of the RM-5

In order to check whether equation (110) is an
adequate mathematical description of the operation of the
RM-5 analog device, a series of problems were deconvoluted
numerically using an IBM 360 computer and the Fortran IV
program briefly described in section 9.2. The effects of
varying the parameters G and ¢, as defined in section 9.1,
were also investigated. Figure 13 shows a Gaussian doublet
problem which was used to investigate the effect of varying

G in equation (110). A(x) and F(x) were calculated exactly
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Tapprox(X) FROM

THE RM-5

Figure 8
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IN FIG. 8

N Tapprox(X)

 FROM RM-5

Figure 9
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IN FIG. 8

p Tapprox(X)
FROM RM-5

Figure 10
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IN FIG. 8

N Tcpprox(x)

FROM RM-5

Figure 11
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Figure 13
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at the points shown in Figure 13 and these numbers were used
as input data for the digital program. The points on T(x)
in Figure 13 represent the exact numerical solution which
should result from this calculation. The problem was then
solved using equation (110), with =1 and G being varied in
steps from 1 to 1000, and carrying out a fixed number of
iterations in each case. The results are shown in Figure 14..
It can be seen that the doublet is resolved for G=10 and

the form of the solution changes very little for ga%ns
greater than 20. Figure 15 shows a Gaussian doublet problem
which was used to check the effect of varying ¢ in

equation (110). It was constructed in the same manner as
was Figure 13 with the exception that many more points wére
used in an effort to provide a more realistic simulation of
the RM-5., Figure 16 shows the solution obtained after 60
iterations with G=500 for various values of ¢, Figure 16

clearly demonstrateé the value of filtering.
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ac=l|
FOR ALL CURVES

Figure 14

Solution obtained after 30 iterations
problem shown in Figure 13 using
equation 110 on digital computer

for



Figure 15
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6=500.00
FOR ALL CURVES

|
L
o

Figure 16

Solution after 60 iterations for problem shown in
Figure 15 using equation 110 on digital computer



CHAPTER X

RESULTS FROM OTHER NUMERICAL COMPUTATIONS

The relatively simple Gaussian doublet problem shown

in Figure 13 was also solved using the accelerated version

of steepest descent as defined by equations 63, 64, and 65.
Figure 17 shows the resulting solution after 10 iterations
for different integer values of p. Figure 18 shows the
resulting solution after 10 iterations for different values
of p with the additional modification that after each iter-
ation, any negative values in the trial solution were set
equal to zero. This in effect is equivalent to the "negative
rejection” feature of the RM-5 device. Examination of
Figure 18 clearly shows that this "negative rejection™ atten~
uates the high frequency noise in the solution and for values
of p greater than 5, noticably accelerates convergence. The
same problem was also solved using the method of conjugate
gradients described in section 6.4. The solution obtained

by this method after 5, 10, 15, and 20 iterations is shown

in Figure 19.
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Figure 17
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Figure 18
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10 ITERATIONS
I5 ITERATIONS
20 ITERATIONS

5

Figure 19

Results from Conjugate Gradients Method



CHAPTER XI

BRIEF REMARKS ABOUT TWO-DIMENSIONAL DECONVOLUTION

The areas of image enhancement and pattern recognition
are typical 2-dimensional deconvolution problems. Because
of the ease with which one can Fourier transform 2-dimensional
functions with optical techniques, a new field of optical
computers is evolving (typical of this method is the work of

Stroke 93 ).

The present limitations on optical methods
are the input-output problems, since the two-dimensional data
is usually'handled in the form of a photographic transparency.

The technique used is just the two-dimensional analogy of the

one-dimensional method as described in section 5.1.



CHAPTER XII
SUMMARY AND CONCLUSIONS

12.1 Discussion of Results

One of the general conclusions which can be drawn
from the material presented in this thesis is that there are
several different iterative techniques which may be used to
solve the convolution integral equation. Perhaps a more
important specific conclusion which is suggested by the
results presented in sections IX and X, is the fact that the
incorporation of filtering and ''negative rejection” in a
numerical iterative technique is highly desirable for the
deconvolution of spectral information. Both of these prop-

erties are incorporated in the RM-5 analog device.

12.2 Implications for Further Work

It would be desirable to investigate the convergence
criteria for the modified Gauss-Seidel iteration, which
describes the operation of the RM-5 device (c.f. equation
110), in some detail, in order to theoretically determine
the effects of G and @« . Another study which could be
carried out theoretically, and/or experimentally, would be
the effects of random noise on the deconvolution process,
again with special emphasis upon the effects of varying G

and «
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APPENDIX I

A definition of the true norm of a square N X N matrix

can be given by56

NL(A) = max {g‘};’f_-‘ (1.1)

where X is any N X 1 vector and |X| is defined by
—1
|x] = i X2 (I.2)
i=1

In order to find the true norm of a matrix A, one first lets
the arbitrary vector X be expanded in terms of the N eigen-

vectors of A:

N
X = }: C,v; (I1I.3)
i=1

where the yy are eigenvectors of the matrix A. Then one

can also write

AX = §i«‘ cikiy:°L (1.4)
i=1

whete li is the eigenvalue of A which is associated with
the eigenvector Yy Using equations (I.2), and (I.3) and

(1.4) substituted into equation (I.1), one can write
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(I.5)

N
_ : 2
NT(A) = max }: (Cili)
i=1
Now for convenience, let the eigenvalues be indexed in

descending order; i.e., l1>'K2>'k3, o o o o e °>>lna Then

equation (I.5) can be rewritten

N

: A
Np(A) = max |1] z (,,ci;b?‘ z c? (1.6)
\ i=1 1 i=1

Now since Xi/ll < 1, with the equality holding only for

i = 1; the term inside the radical is < 1 with the equality
holding only for the following conditions:

, C: i=1

C, = ’ (I.7)
0; i>1

Under these conditions also, the right hand side of
equation (I.6) is maximized resulting in llll, which is the
magnitude of the largest eigenvalue of the matrix A, Hence

the result

No(A) = [Aq] (1.8)



